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Insect pests are a major threat to agricultural biosecurity across the world, causing substantial economic
losses. Majority of the species distribution modeling studies use precise coordinates (latitude/longitude)
of species occurrences in MaxEnt (or maximum entropy model). However, lack of precise coordinates of
insect pest occurrences at national/regional level is a common problem for many countries including
India. This is because of the limited resources, lack of nationally coordinated surveys, and growers/farm-
ers’ privacy issues; district-level occurrences are commonly available (e.g., National Agricultural Pest
Information System or NAPIS in the United States; http://pest.ceris.purdue.edu/). We demonstrated the
use of MaxEnt to generate a preliminary, district-level map of the potential risk of invasion by an exotic
cotton mealybug Phenacoccus solenopsis (Tinsley) (Hemiptera: Pseudococcidae) in India. District-level
occurrence data were integrated with bioclimatic variables (values averaged within districts) using Max-
Ent. The MaxEnt model performed better than random with an average test AUC value of 0.86 (±0.05).
Our model predictions matched closely with the documented occurrence of P. solenopsis in all nine cotton
growing states, and also predicted suitable habitats in other districts across India. The greatest threat of P.
solenopsis infestations were predicted in most districts of Gujarat, Maharashtra, Andhra Pradesh, south-
western Punjab, northwestern Rajasthan, and western Haryana. Precipitation of coldest quarter, temper-
ature annual range, and precipitation seasonality were the strongest predictors associated with P.
solenopsis distribution. Precipitation of coldest quarter was negatively correlated with P. solenopsis occur-
rence. Mapping the potential distribution of invasive species is an iterative process, and our study is the
first attempt to model national-level risk assessment of P. solenopsis in India. Our results can be used for
selecting monitoring and surveillance sites and designing local, regional and national-level integrated
pest management policies for cotton and other cultivated crops in India. The maps of potential pest dis-
tributions are urgently needed by agriculture managers and policymakers. Our approach can be used in
other countries that lack precise coordinates of insect pest occurrences and generate a preliminary map
of potential risk because it may be too late to wait for the precise coordinates of pest occurrences to gen-
erate a perfect map.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Invasive species are one of the major and most rapidly growing
threats to agricultural biosecurity, livelihoods, human and animal
health, forestry and biodiversity and result in huge economic losses
(Davis, 2009; Pimentel, 2011). Growing trade and transportation
along with other elements of globalization are facilitating
invasions at an unprecedented rate (Levine and D’Antonio, 2003;
Hulme, 2009). Mealybugs belong to one of the more common
groups of small sap-sucking insects. They are considered a major
agricultural pest on multiple continents causing serious problems
(e.g. crop failure) when introduced to new geographic areas (Miller
et al., 2002). Recent infestations of exotic cotton mealybug Phena-
coccus solenopsis (Tinsley) in nine cotton growing states of India
and several states in Pakistan have resulted in millions of dollars
of damage to cotton crops and increased need for insecticides
and other preventive measures (Aheer et al., 2009; Nagrare et al.,
2009). The importance of cotton to India cannot be overstated;
one-quarter of worldwide cotton acreage is planted there and over
60 million citizens depend on this crop for livelihood (Raju et al.,
2008; NCIPM, 2009).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2014.02.007&domain=pdf
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P. solenopsis is native to the United States, and was first de-
scribed by Tinsley (1898) in New Mexico, where it is found wide-
spread on several ornamental and fruit crops. It is considered an
exotic pest in Southeast Asia and other countries around the world
including Argentina, Australia, Brazil, Chile, China, Ecuador, India
and Pakistan (Vennila et al., 2010). The earliest P. solenopsis infes-
tations in India were recorded in 2005 in Gujarat state (Jhala et al.,
2008). It spread rapidly after it was first introduced, and was re-
ported from all nine cotton growing states of India by 2008 (Nag-
rare et al., 2009). Wang et al. (2010) developed a global potential
distribution map of P. solenopsis using average climate surface vari-
ables at 0.5� � 0.5� spatial resolution (approximately 55 km at the
equator). Their map is too coarse to use for a national or regional
scale planning and decision making. Detailed information on the
potential habitat distribution of P. solenopsis in India remains un-
known, and there is concern that future infestations may impact
cotton and other cultivated crops such as okra, tomato, chili pep-
pers, brinjal, and potato. Risk maps that show the potential distri-
bution of P. solenopsis will be important management tools for
early detection and monitoring, and integrated pest management
planning (Macfadyen and Kriticos, 2012).

P. solenopsis is a polyphagus insect pest with a wide range of
host plants including all four species of cotton and hundreds of
other plant species. There are several natural enemies of mealy-
bugs that control their populations including the parasitoid Aena-
sius bambawalei Hayat (Hymenoptera: Encyrtidae) (Prasad et al.,
2011). P. solenopsis exhibited obligate sexual ovoviviparous repro-
duction (Prasad et al., 2012) and generally lays 500–600 eggs. It has
a life cycle of 24–30 days and a female mealybug may produce 10–
15 generations per year (Hanchinal et al., 2011). Initially the insect
breeds on weeds such as parthenium (Parthenium hysterophorus),
milkweed (Asclepias spp.), Chenopodium spp., and datura (Datura
alba), and later migrates to cotton (Gossypium hirsutum) and other
crops. Mealybug nymphs spread from infected to healthy plants via
wind, irrigated water, rain, ants, and birds or by sticking/clinging to
equipment, animals or people (Tanwar et al., 2007). Mealybugs can
feed on all parts of a plant, but prefer actively growing leaf tissue,
petioles, and leaf veins. They damage the plants by sucking sap
from leaves, twigs, stems, roots and fruiting bodies. They inject
toxic saliva into the plant parts causing chlorosis, stunting, defor-
mation and death of plants (Tanwar et al., 2007).

Distribution and abundance of insects are highly influenced by
climatic factors (temperature, moisture, humidity and their sea-
sonal variations); especially the effects of temperature (Sutherst,
2000; Bale, 2002). Temperature and soil moisture may also interact
to affect different developmental life stages of an insect. Tempera-
ture is one of the most influential environmental factors that af-
fects distribution and abundance of different species of
mealybugs (Amarasekare et al., 2008; Chong et al., 2003, 2008;
Kim et al., 2008; Prasad et al., 2012). A detailed study examining
the effects of temperature on the life cycle of P. solenopsis under
laboratory conditions found lower development temperature
thresholds for female and male at 11.7 �C and 10.1 �C, respectively.
Female development was optimum at 32 �C and the upper temper-
ature threshold for P. solenopsis development was around 39 �C
(Prasad et al., 2012). Under laboratory conditions, relative humid-
ity between 40% and 90% was found to be adequate for sustaining
P. solenopsis populations (Vennila et al., 2010; Nagrare et al., 2011).
Rainfall has been found to reduce the severity of P. solenopsis but it
can also increase pest incidence because rainwater splashes act as
a dispersal vector (Vennila et al., 2010).

Ecological niche models (ENM) and species distribution models
(SDM) integrate species occurrence records with climatic and other
environmental variables and generate maps of species potential or
realized distribution (Bentlage et al., 2013). The distribution maps
produced by ENM/SDM are used to design scientific surveys and
manage insect pest infestations. These models can also identify
environmental factors that limit a species’ distribution. ENM/
SDM approach is increasingly being used to map potential distribu-
tions of many species including insect pests (De Meyer et al., 2010;
Wang et al., 2010; Evangelista et al., 2011; Parsa et al., 2012). In
this study we used maximum entropy modeling (or MaxEnt) to
predict the invasion potential of an exotic cotton mealybug, P.
solenopsis. We hypothesized that an ENM/SDM will be able to pre-
dict the potential distribution of P. solenopsis using district-level
occurrence data with high accuracy, and that climate factors alone
would be good predictors. Our objectives were to: (1) generate a
preliminary district-level map of the potential distribution of P.
solenopsis in India, (2) quantify relative risk of invasion by P. solen-
opsis across all Indian states, and (3) identify bioclimatic factors
associated with P. solenopsis distribution.
2. Materials and methods

2.1. Occurrence records and climate data

Geographic coordinates (i.e., latitude and longitude) of locations
where a species was found present are typically used for ENM/
SDM. For this study, precise locality coordinates for P. solenopsis
were not available, so the district-level occurrence data published
by Nagrare et al. (2009) were used (n = 42 records). Additional dis-
trict-level occurrences (n = 11) for Karnataka, Tamil Nadu and
Madhya Pradesh states were obtained from other published arti-
cles (e.g., Hanchinal et al., 2009, 2010, 2011) and Krishi Vigyan
Kendra (Agricultural Science Center) Action Plan reports for differ-
ent districts published in 2008, 2009, and 2010. We could not use
GoogleEarth to generate approximate coordinates of P. solenopsis
occurrence in cotton fields in the above districts because a GIS
layer for cotton crop in India was unavailable. Therefore, a total
of 53 district-level records (Fig. 1a) were used to generate a preli-
minary, district-level map of potential distribution for P. solenopsis,
thus making use of the best available data. We did not use cen-
troids of districts as surrogates of species occurrence points as
some authors have done (e.g., Asian tiger mosquito, Aedes albopic-
tus (Benedict et al., 2007; Medley, 2010). The centroid method may
be acceptable if the target scale of prediction is global but may not
be appropriate at national, state or finer scales; districts are not
homogeneous, and some of them can be quite large. We calculated
district-level averages of climatic variables in ArcMap (version 9.3,
ESRI, Redlands, CA, USA) and used those as predictors. This is a rel-
atively unconventional use of ENM/SDM, and the results may be
useful for designing detailed surveys and making district-level
state, regional or national pest management policies before more
detailed, precise data for this species become available.

We obtained 19 bioclimatic data layers from the WorldClim
dataset (Hijmans et al., 2005; http://www.worldclim.org/; Table 1)
at �1-km spatial resolution to represent current climatic condi-
tions. The WorldClim dataset was generated using an interpolation
technique using altitude and monthly temperature and precipita-
tion records from 1950 to 2000. The 19 bioclimatic variables that
define general trends, seasonality and extremes are considered
biologically more meaningful than simple monthly or annual aver-
ages of temperature and precipitation in defining a species’ eco-
physiological tolerances (Nix, 1986; Kumar et al., 2009). We
checked all bioclimatic variables for high cross-correlations using
Pearson correlation coefficient (r P 0.70 or 6�0.70). To reduce
problems due to multicollinearity (Dormann et al., 2013) we in-
cluded only one variable from a set of highly correlated variables
(Appendix A). The decision to include or drop one of each set of
highly correlated variables was made based on their potential bio-
logical relevance to P. solenopsis and their relative predictive power

http://www.worldclim.org/


Fig. 1. (a) Current P. solenopsis occurrences (n = 53; grey shaded districts) in nine cotton growing states (represented by darker boundaries) in India, and (b) predicted
potential risk of invasion by P. solenopsis in India; cross-hatched districts currently have P. solenopsis.

Table 1
Relative contribution of different bioclimatic variables to MaxEnt model for P. solenopsis. Percent contribution values are averages over 100 replicate runs. General statistics show
the bioclimatic profile of P. solenopsis and were calculated based on 53 district-level P. solenopsis occurrence records.

Variable Percent contribution Mean Standard deviation Minimum Maximum

Precipitation of coldest quarter (Bio19; mm) 30.8 41.2 64.7 1.2 358.7
Temperature annual range (Bio7; �C) 26.8 27.5 6.5 14.5 37.3
Precipitation seasonality (CV) (Bio15) 23.3 119.0 21.3 72.4 160.4
Precipitation of wettest month (Bio13; mm) 10.4 218.7 89.5 62.8 539.2
Annual mean temperature (Bio1; �C) 8.8 26.2 1.1 24.2 28.6
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assessed based on training gain. Some variables were dropped be-
cause of their lower predictive power (i.e., percent contribution
and jackknife training gain). The final model included only five bio-
climatic variables (Table 1).
2.2. Modeling procedure

We used maximum entropy modeling or MaxEnt algorithm
(version 3.3.3k; (Phillips et al., 2006) for quantifying relative risk
of invasion and mapping the potential geographic distribution of
P. solenopsis in India. We chose MaxEnt because: (1) it is a pres-
ence-only modeling algorithm (no absence data are needed), (2)
it has performed relatively better than other modeling methods
(Elith et al., 2006; Evangelista et al., 2008; Kumar et al., 2009),
and (3) it is relatively robust to small sample sizes (Pearson
et al., 2007; Kumar and Stohlgren, 2009). MaxEnt estimates the
probability of presence of a species based on presence records
and randomly generated background points by finding the maxi-
mum entropy distribution (Phillips et al., 2006). It uses a regulari-
zation parameter to control overfitting and can handle both
categorical and continuous variables. MaxEnt uses five different
features (linear, quadratic, product, threshold, and hinge) that con-
strain the geographical distribution of a species. The output from
MaxEnt is an estimate of habitat suitability for a species that gen-
erally varies from 0 (lowest) to 1 (highest). We tested different set-
tings in MaxEnt by varying regularization parameter, number of
iterations and feature types. However, default settings in MaxEnt
yielded the best model for P. solenopsis. Our final model included
only linear, quadratic and hinge feature types which could be
due to the smaller sample size. Since we did not have precise coor-
dinates of P. solenopsis occurrence, we used district-level occur-
rence as ‘presence’ locations in MaxEnt. We used ‘samples with
data’ (SWD) format in MaxEnt using district level summaries of cli-
matic variables and latitude and longitude of district centers as
placeholders (MaxEnt does not use latitude/longitude information
in model fitting when using SWD format). MaxEnt randomly se-
lects 10,000 background points from the landscape. However, we
restricted background point selection to nine cotton growing states
and used 203 districts (excluding 53 presence districts) in MaxEnt.
The resulting model using 53 presences and 203 background
points from the nine states was then projected to all districts
across India to identify potential new areas of invasion. Model pre-
dictions for all the districts were brought into a geographic infor-
mation system (GIS) and maps were generated using ArcMap.
Three arbitrary categories of risk of invasion by P. solenopsis were
defined as low (<0.3), medium (0.3–0.5) and high (>0.5) based on
predicted habitat suitability.
2.3. Model evaluation and validation

Area Under the ROC (receiver operating characteristic) curve or
AUC (Swets, 1988) metric was used to evaluate the model perfor-
mance. The AUC is a threshold-independent measure of a model’s
ability to discriminate presence from absence (or background). It
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varies from 0.5 to 1; an AUC value of 0.5 shows that model predic-
tions are not better than random, values <0.5 are worse than ran-
dom, 0.5–0.7 signifies poor performance, 0.7–0.9 signifies
reasonable/moderate performance, and >0.9 indicates high model
performance (Peterson et al., 2011). MaxEnt calculates AUC values
slightly differently than other traditional approaches. It calculates
AUC by defining specificity using the predicted area and not true
commission; see Phillips et al. (2006) for more details. Since we
used the SWD format in MaxEnt we used ‘PresenceAbsence’ pack-
age in R, version 2.15.1 (R Development Core Team, 2012), to cal-
culate AUC values.

Model validation was performed using ‘subsampling’ procedure
in MaxEnt. Seventy percent of the P. solenopsis data were used for
model calibration (training data: 38 districts) and the remaining
30% for model validation (test data: 15 districts). One hundred rep-
licates were run and average AUC values for training and test data-
sets were calculated using ‘PresenceAbsence’ package (R
Development Core Team, 2012). Percent variable contribution
and jackknife procedures in MaxEnt were used to investigate rela-
tive importance of different bioclimatic predictors. Response
curves were used to study the relationships between bioclimatic
variables and the predicted probability of presence of P. solenopsis.
3. Results

3.1. Predicted current and potential distribution of P. solenopsis

The MaxEnt model predicted 91% of the currently documented
P. solenopsis occurrences (i.e., 48 out of 53 districts) in high and
medium risk categories with habitat suitability >0.30. The model
predicted highly suitable areas for P. solenopsis in most of Gujarat
(excluding a few districts in northeastern parts of the state), Maha-
rashtra and Andhra Pradesh, southwestern Punjab, northwestern
Rajasthan, and western Haryana (Fig. 1b; Table 2). Currently, the
highest number of infested districts (15) is in Maharashtra state
and our model also predicted highest risk in this state with 25 dis-
tricts predicted under high and medium risk of invasion (Table 2).
Gujarat state was predicted to have the second highest risk of
infestation with 13 and 4 districts under high and medium risk,
respectively.

The model predicted higher risk of P. solenopsis infestation in
Karnataka and Andhra Pradesh where currently only a few districts
show P. solenopsis presence (Fig. 1a and b; Table 2). Madhya Pra-
desh and Rajasthan were predicted under relatively lower risk
compared to other cotton growing states (Fig. 1a and b; Table 2).
The model predicted very low habitat suitability for P. solenopsis
in Jabalpur district (probability 0.10) of Madhya Pradesh and lower
suitability for Thiruvarur and Perambalur districts in Tamil Nadu
(probabilities 0.22 and 0.24, respectively; Appendix A). These dis-
tricts are currently infested with P. solenopsis yet the model
Table 2
Number of currently infested districts and the number of districts predicted under differen
Risk categories were arbitrarily defined by assigning higher risk to districts with high pre

State No. of districts with current cotton mealybug presence N

H

Maharashtra 15 1
Gujarat 11 1
Punjab 7
Karnataka 6
Tamil Nadu 5 –
Haryana 4
Andhra Pradesh 2 1
Rajasthan 2
Madhya Pradesh 1
predicted them under a lower risk category. The model predicted
low risk in all Northeastern states, Jammu and Kashmir, Himachal
Pradesh, Uttarakhand and parts of Uttar Pradesh and Madhya Pra-
desh including coastal districts in Western Ghats in southern India
(Fig. 1b). The model also predicted high risk of invasion for five dis-
tricts in Bihar, four in Orissa, and two in West Bengal (Fig. 1b).

3.2. Model performance and influencing factors

MaxEnt predicted potential distribution of P. solenopsis with
high accuracy for a generalist invader with an average test AUC va-
lue of 0.86 (±0.05) and an average training AUC value of 0.91
(±0.01). The final model included only five variables. Model predic-
tions closely matched the documented occurrence of P. solenopsis
in all nine cotton growing states and also showed potentially suit-
able districts in other states of India (Fig. 1b). Precipitation of cold-
est quarter (Bio19), temperature annual range (Bio7), and
precipitation seasonality (Bio15) were the strongest predictors of
P. solenopsis distribution with 30.8, 26.8, and 23.3 percent contri-
butions, respectively (Table 1). Jackknife results also showed that
temperature annual range had the highest predictive power (high-
est regularized training gain and AUC; Fig. 2a and b). Individual re-
sponse curves for different bioclimatic variables (i.e. model created
using only the corresponding variable) showed that the predicted
probability of presence of P. solenopsis was positively correlated
with temperature and negatively correlated with precipitation
(Fig. 3). Probability of P. solenopsis presence increased up to
26.7 �C average annual temperature and decreased sharply after
that (Fig. 3a); similar trends were observed for temperature annual
range (Fig. 3b). Probability of P. solenopsis presence decreased with
the increasing precipitation of coldest quarter (Bio19; Fig. 3c) but
slowly increased with increasing precipitation seasonality and
then sharply declined after a value of 120 (Fig. 3d).
4. Discussion

To our knowledge this is the first study to demonstrate Max-
Ent’s use for district-level species occurrences and predict invasion
potential of an insect pest at landscape/regional level. All of the
previous species distribution modeling studies using MaxEnt used
precise coordinates of species occurrences. We showed that in the
absence of precise coordinates district-level data can be used in
MaxEnt to generate a preliminary map of potential distribution of
a species. This map can be used to design future more detailed sur-
veys and better planning for using limited funds and human re-
sources. The maps should be updated as soon as the precise
coordinates become available.

This study presents a preliminary map of potential distribution
of P. solenopsis distribution in India using ecological niche model-
ing. MaxEnt model was highly successful in predicting currently
t categories of risk of invasion by P. solenopsis in nine cotton growing states in India.
dicted suitability.

o. of districts predicted under different risk categories (suitability range)

igh (>0.5) Medium (0.3–0.5) Low (<0.3)

5 10 9
3 4 8
7 5 6
6 7 14

9 21
3 4 12
1 10 2
4 1 27
1 4 43



Fig. 2. Relative importance of different environmental variables based on results of jackknife tests in MaxEnt. Graphics show variable contributions to (a) regularized training
gain, and (b) AUC (area under the ROC curve). Values shown are averages over 100 replicate runs.

Fig. 3. Relationships between top environmental predictors and the probability of presence of P. solenopsis in India. (a) Mean annual temperature (Bio1, �C), (b) temperature
annual range (Bio7, �C), (c) precipitation of coldest quarter (Bio19, mm), and (d) precipitation seasonality (Bio15). Red curves show the mean response and blue margins are
±1 SD calculated over 100 replicates. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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documented occurrences of P. solenopsis. The model also identified
several potentially suitable areas for P. solenopsis across India,
which indicates that P. solenopsis has not yet reached its full poten-
tial range. Precipitation and temperature variables were important
determinants of P. solenopsis distribution. Since the model pro-
duced using district-level species occurrence data is relatively
coarse there is an urgent need to collect precise coordinates (lati-
tude and longitude) of P. solenopsis occurrence locations to increase
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the predictive accuracy of this model. Results from this study can
be used for designing local, regional and national-level integrated
pest management policies for cotton and other cultivated crops
in India. For example, our results can be used to prioritize control
efforts by first targeting highly suitable districts (Fig. 1b) and de-
sign future sampling strategies for early detection and rapid re-
sponse. Our map also showed areas where P. solenopsis is most
likely to invade which can be helpful in preventing its spread to
non-infested but potentially vulnerable districts.

4.1. Potential threat of P. solenopsis to cotton and other cultivated
crops in India

MaxEnt model performed excellent and accurately predicted
majority of the currently infested districts under high and medium
risk of P. solenopsis invasion (Fig. 1a and b). Out of nine cotton
growing states in India, the model predicted significantly high risk
of P. solenopsis infestations to cotton and other crops in Maharash-
tra, Gujarat, Andhra Pradesh and southern parts of Punjab and
northern Rajasthan (Fig. 1b). The model predicted low risk in most
of the Northern states including Jammu and Kashmir, Himachal
Pradesh, Uttarakhand, and all Northeastern states (Fig. 1b). This
could be because of the very low temperatures in the coldest
months (<10 �C) in these areas that are not optimal for P. solenopsis
growth (Prasad et al., 2012). The model predicted low risk for many
districts in Rajasthan and Madhya Pradesh which is possibly due to
extremely hot (average temperatures >40 �C) and dry conditions in
these areas during summer (Fig. 1b). The model also predicted high
risk of invasion for five districts in Bihar, four in Orissa, and two in
West Bengal (Fig. 1b) which might be erroneous because P. solen-
opsis has not be reported from these areas. This error could be be-
cause of the model extrapolations beyond the training region (i.e.
nine cotton growing states; Stohlgren et al., 2011). It is also possi-
ble that these areas are climatically suitable but do not have host
plant species for P. solenopsis. For example, rice, wheat, mustard,
lentil and pea are the major cultivated crops in the four predicted
high risk districts in Bihar.

In a previous study, Wang et al. (2010) developed a potential
distribution model for P. solenopsis at global level using the CLIMEX
model. CLIMEX simulates different mechanisms that limit geo-
graphical distributions of a species (Sutherst, 2003). Inputs for
the CLIMEX model include values of species specific ecophysiolog-
ical variables such as lower and upper limits of moisture, temper-
ature, and different stress indices (Sutherst and Maywald, 1985).
This model was developed at 0.5� � 0.5� spatial resolution and
may not be suitable for state or regional level planning and policy
making. The Wang et al. (2010) model predicted high to medium
climate suitability of P. solenopsis for most parts of India except
Northern most parts of the country and western Rajasthan. Our
model predictions agreed with Wang et al. (2010) predictions in
most of the cotton growing areas but differed significantly in other
areas such as Northeastern states, central India and coastal areas
(Fig. 1b). These differences could be because of the model specific
assumptions, calibration settings, uncertainties and errors, and
spatial resolution of climatic layers. For example, Wang et al.
(2010) used only two locations from Northwestern India (Bathinda
and Hisar) in CLIMEX model to analyze the climatic suitability for
P. solenopsis. Differences in the two model results can also be due
to the ways these models quantify the potential distribution of a
species; for example, MaxEnt is a correlative model whereas CLI-
MEX is a mechanistic or process-based model. The mechanistic ap-
proach is based on direct measures of physiological variables and
ignores biotic interactions, whereas the correlative approach is
based on observations that already include effects of biotic interac-
tions (e.g., presence of host plant species at insect pest occurrence
locations) on distributions of species; both approaches have
strengths and weaknesses (Soberon and Peterson, 2005; Dormann
et al., 2012). Our study produced a higher resolution district-level
map of risk of invasion by P. solenopsis that is more useful than pre-
vious map for designing integrated pest management policies at
state, regional, and national levels.

4.2. Effects of climatic factors on P. solenopsis distribution

Both precipitation and temperature variables were strongly cor-
related with P. solenopsis distribution (Fig. 2a and b). Precipitation
of coldest quarter had strong negative influence on P. solenopsis
whereas temperature had a positive effect (Fig. 3). Short term stud-
ies have shown reduction in P. solenopsis severity due to rainfall
which is consistent with our results (Vennila et al., 2010). The
model results matched closely with the recent laboratory studies
and field observations of temperature effects on P. solenopsis. The
models results showed that the probability of presence of P. solen-
opsis had a unimodal response to temperature (Fig. 3a). The prob-
ability of presence of P. solenopsis was lowest at 10 �C temperature
and increased up to 27 �C (Fig. 3a and b) which is consistent with
the recent findings of Prasad et al. (2012) who found 10.1 �C and
11.7 �C as the lower development temperature thresholds for male
and female P. solenopsis, respectively. Their results also showed the
optimum development at 32 �C and no development at 40 �C. Field
observations on the distribution of P. solenopsis from Sindh state in
Pakistan showed the common occurrence of P. solenopsis at sites
with temperatures from 30.5 to 39.5 �C (Khuhro et al., 2012); this
validates model predictions of steep relationship between the
probability of occurrence for P. solenopsis and temperature from
35 to 40 �C (Fig. 3b; Sreedevi et al., 2013). Overall, these results
show absence of P. solenopsis in colder environments with average
temperatures <10 �C and very hot environments (i.e., temperatures
>40 �C).

4.3. Caveats, future directions and management implications

ENM/SDM are not without limitations and assumptions, and are
often affected by the quality of data and different decisions made
during the model fitting. For example, they can be affected by sam-
pling bias (Kadmon et al., 2004), sample size (Stockwell and Peter-
son, 2002), multicollinearity (Dormann et al., 2013), and spatial
autocorrelation (Segurado et al., 2006). Performance of different
ENM/SDM also depends on species characteristics, spatial resolu-
tion and extent of the study area, and choice of predictor variables
(Evangelista et al., 2008; Guisan et al., 2007a,b). Regardless of these
and other conceptual and practical problems (Soberon and Peter-
son, 2005; Menke et al., 2009) ENM/SDM are increasingly used to
predict potential distributions of species of concern (Franklin,
2009; Elith et al., 2010; Peterson et al., 2011) because resource
managers need accurate maps of species distribution and abun-
dance for risk analysis. MaxEnt is robust to small sample sizes
but it is affected by the way background data points are selected
(Phillips, 2008; Phillips et al., 2009; VanDerWal et al., 2009). We
dealt with some of these issues by dropping highly correlated vari-
ables to reduce multicollinearity effects and by training our model
using background points from only nine cotton growing states.
Extrapolations of niche models to novel environments might result
in erroneous or uncertain predictions of potentially suitable areas
for a species (Stohlgren et al., 2011). It is possible that our model
predictions may have high uncertainty in areas that are far away
from currently infested districts; for example, areas in extreme
Northern and Northeastern states of India (Fig. 1b). The Multivari-
ate Environmental Similarity Surface or MESS analysis imple-
mented in MaxEnt (Elith et al., 2011) can provide insight into the
novel environments and appropriate interpretation of model
projections.
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Future modeling work should include information on major
host plant species distributions (e.g., cotton growing areas), land
use land cover types, species specific phenology variables (e.g.,
lower and upper temperature development thresholds) (Buckley
et al., 2011; Sambaraju et al., 2012), and remotely sensed variables
(e.g., Normalized Difference Vegetation Index) with precise species
occurrence records (Prabhakar et al., 2013). There is a temporal
mismatch between the climatic data and P. solenopsis occurrence
records because bioclimatic variables in our study were generated
using temperature and precipitation records from 1950 to 2000
(Hijmans et al., 2005). If possible, future modeling efforts for P.
solenopsis distribution should include a new set of bioclimatic vari-
ables generated using the most recent climatic data layers. Since
temperature was one of the most important factors affecting P.
solenopsis distribution it is highly likely that its phenology will shift
as a result of climate change (Hodgson et al., 2011). Future work
may include the assessment of effects of changing climatic condi-
tions on the P. solenopsis distribution because potential future
changes in temperature and precipitation might affect insect pests’
population growth rates, increase the number of generations, ex-
tend the development season, and alter the crop-pest synchrony
and interspecific interactions (Porter et al., 1991). A species niche
is also shaped by its natural enemies, host plants, their interac-
tions, and climatic conditions (Zhou et al., 2010). The climatic niche
for P. solenopsis predicted in this study represents the niche space
that could be utilized in the absence of competition and its natural
enemies. MaxEnt model did not take into account the natural biotic
mortality (e.g., due to parasitoids and predators), which governs
the relative abundance of the species at any given location. A com-
prehensive pest management plan for P. solenopsis should consider
the distribution of its natural enemies, host plants, and spatial and
temporal variation in its phenology across India. Areas predicted
under high and/or medium risk of P. solenopsis invasion that also
have its host plant species (e.g. cotton plants in nine cotton grow-
ing states) should be targeted first.

Our study presents a novel approach to assessing the invasion
potential of an insect pest using district-level occurrence data
using niche models. Results provide insight into the climatic fac-
tors that affect P. solenopsis distribution in India. This is the first at-
tempt to model national-level risk of invasion by P. solenopsis in
India. Risk analysis of biological invasions is an iterative process
and development of an initial model is recommended using the
best available species occurrence data; further improvements
should be made as more accurate data become available (Stohlgren
and Schnase, 2006). The preliminary map developed in this study
can be refined to regional scales by integrating more detailed spe-
cies occurrence data collected using scientifically designed field
surveys (Stohlgren, 2007) and higher resolution predictor vari-
ables. The predicted map can also serve as a testable alternative
hypothesis for P. solenopsis occurrence in non-infested districts. Re-
sults will be useful for designing local, regional and national-level
pest management policies for cotton and other cultivated crops in
India. For example, results can be used for selecting monitoring
and surveillance sites and planning the reduced applications of
pesticides in cotton crops in districts that are predicted under
low risk (Appendix B). The maps of potential pest distributions
are urgently needed by agriculture managers and policymakers.
Our approach can be used in other countries that lack precise coor-
dinates of insect pest occurrences and generate a preliminary map
of potential risk because it may be too late to wait for the precise
coordinates of pest occurrences to generate a perfect map.
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